A Bound for the Fixed-Point Index of an Area-Preserving Map with Applications to Mechanics

نویسنده

  • Carl P. Simon
چکیده

Area-preserving maps and flows play an essential role in the study of motions of mechanical systems, especially in celestial mechanics (see [1, 14]). Since one is often interested in the behavior of an area-preserving map around a fixed point and in the number and type of critical points and periodic orbits of an area-preserving flow, the ./i'xed-point index of a map and the index oj" a singularity or a closed orbit of a flow can yield much information about the map or flow. For example, the fact that the index of an isolated singularity of an area-preserving flow can never be greater than +1 has aided in setting a lower bound for the number of stationary points of certain area-preserving flows. It has also been a useful necessary condition for a flow to be area-preserving. For these reasons, the conjecture that the fixed-point index of an area-preserving homeomorphism of a 2manifold is always less than or equal to + 1 has drawn attention. In this paper, we answer this conjecture in the affirmative for smooth maps and then put this bound to work to show that certain maps must have at least two fixed points and certain flows at least two periodic orbits. An important application is the following generalization of a famous theorem of Liapunov: a Hamiltonian vectorfield on M 4 must have two distinct one-parameter families of periodic orbits around a non-degenerate minimum (or maximum) of the Hamiltonian, even when the pure imaginary characteristic exponents are in resonance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On intermediate value theorem in ordered Banach spaces for noncompact and discontinuous mappings

In this paper, a vector version of the intermediate value theorem is established. The main theorem of this article can be considered as an improvement of the main results have been appeared in [textit{On fixed point theorems for monotone increasing vector valued mappings via scalarizing}, Positivity, 19 (2) (2015) 333-340] with containing the uniqueness, convergent of each iteration to the fixe...

متن کامل

Some local fixed point results under $C$-class functions with applications to coupled elliptic systems

The main objective of the paper is to state newly fixed point theorems for set-valued mappings in the framework of 0-complete partial metric spaces which speak about a location of a fixed point with respect to an initial value of the set-valued mapping by using some $C$-class functions. The results proved herein generalize, modify and unify some recent results of the existing literature. As an ...

متن کامل

Conformal maps and non-reversibility of elliptic area-preserving maps

It has been long observed that area-preserving maps and reversible maps share similar results. This was certainly known to G.D. Birkhoff [5] who showed that these two types of maps have periodic orbits near a general elliptic fixed point. The KAM theory, developed by Kolmogorov-ArnoldMoser for Hamiltonian systems [9], [1] and area preserving maps [15], has also been extended a great deal to rev...

متن کامل

Dynamical Behavior of a Rigid Body with One Fixed Point (Gyroscope). Basic Concepts and Results. Open Problems: a Review

The study of the dynamic behavior of a rigid body with one fixed point (gyroscope) has a long history. A number of famous mathematicians and mechanical engineers have devoted enormous time and effort to clarify the role of dynamic effects on its movement (behavior) – stable, periodic, quasi-periodic or chaotic. The main objectives of this review are: 1) to outline the characteristic features of...

متن کامل

Robust Fixed-order Gain-scheduling Autopilot Design using State-space Stability-Preserving Interpolation

In this paper, a robust autopilot is proposed using stable interpolation based on Youla parameterization. The most important condition of stable interpolation between local controllers is the preservation of stability so that each local controller can ensure stability for an open neighborhood around a nominal point. The proposed design used fixed-order robust controller with parameter-dependent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005